Circulating prostasin: an independent risk marker in idiopathic pulmonary fibrosis (IPF)

Jamie LTodd,^{1,2} Courtney Page,¹ Peitao Wu,³ John A Belperio,⁴ Toby M Maher,⁵ Scott M Palmer,^{1,2} Thomas Schlange⁶ on behalf of the IPF-PRO Registry investigators ¹Duke Clinical Research Institute, Durham, North Carolina, USA; ²Duke University Medical Center, Durham, North Carolina, USA; ³Boehringer Ingelheim Pharmaceuticals, Inc., Ridgefield, Connecticut, USA; ⁴David Geffen School of Medicine at UCLA, Los Angeles, California, USA; ⁵Keck School of Medicine, University of Southern California, Los Angeles, California, USA; ⁶Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany.

INTRODUCTION

- Identifying prognostic biomarkers in patients with IPF remains an unmet need.
- Prostasin is a serine protease expressed in alveolar epithelial cells where it regulates fluid and electrolyte via sodium channel proteolysis.¹
- Circulating prostasin level may be predictive of disease progression in patients with interstitial lung disease

AIM

To examine associations between prostasin at enrollment and changes in prostasin over 6 months and of respiratory death in patients in the IPF-PRO Registry.

METHODS

- The IPF-PRO Registry is a multicenter US registry of patients with IPF that was diagnosed or confirme enrolling center in the past 6 months.⁴
- Prostasin levels were quantified in plasma samples taken at enrollment (n=624) and at 6 ± 3 months enrollment (n=292) using immunoassay (Myriad RBM).
- The cumulative incidence of respiratory death stratified by prostasin level above or below the mediar enrollment was described in the overall cohort and in subsets by use of antifibrotic therapy at enroll
- Cox proportional hazards models, unadjusted and adjusted for age, sex, FVC % predicted, and DLco predicted at enrollment, were used to test the association between prostasin level at enrollment and respiratory death.
- Associations between absolute change in prostasin from enrollment to 6 months and subsequent res death were analyzed using Cox proportional hazards models, landmarked at the follow-up (6 ± 3 mor post-enrollment) sample collection date. The model was minimally adjusted (for prostasin at enrollm fully adjusted (for prostasin, age, sex, FVC % predicted, and DLco % predicted at enrollment).
- Two-step iterative resampling was used to test the internal validity of the associations seen in the Cox proportional hazards models. The analysis cohort was randomly split into discovery and replication of in a 7:3 ratio and 100 random splits were taken. Findings were to be considered internally robust if the association was validated in \geq 20% of the 100 random splits.⁵

CONCLUSIONS

- In a real-world cohort of patients with IPF, circulating prostasin level at baseline, and absolute change in prostasin level over 6 months, were associated with the risk of respiratory death after adjusting for demographic and clinical factors known to be associated with disease progression.
- These findings supports the potential value of prostasin as a prognostic biomarker in patients with IPF.

REFERENCES

- 1. Aggarwal S et al.] Biomark 2013;2013:179864.
- 2. Bowman WS et al. Lancet Respir Med 2022;10:593–602. 3. Oldham JM et al. Am J Respir Crit Care Med 2023;doi:10.1164/
- rccm.202301-0117OC.

Scan QR code or visit URL for a device-friendly version of this poster.

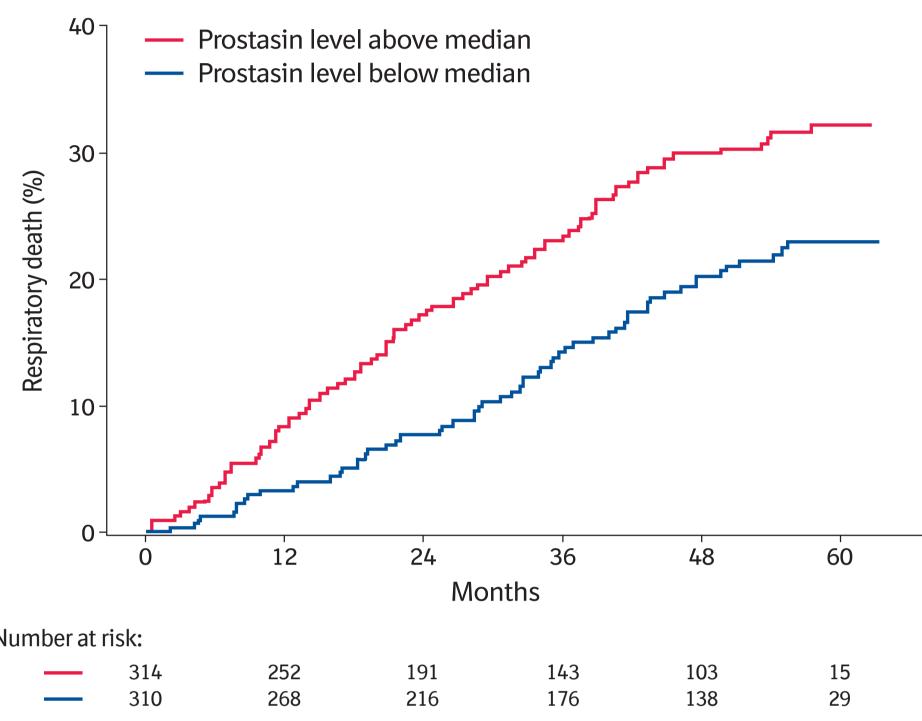
https://www.usscicomms.com/respiratory/ATS2024/Todd2

Scan QR code or visit URL for a webpage featuring all BI-supported presentations at ATS 2024.

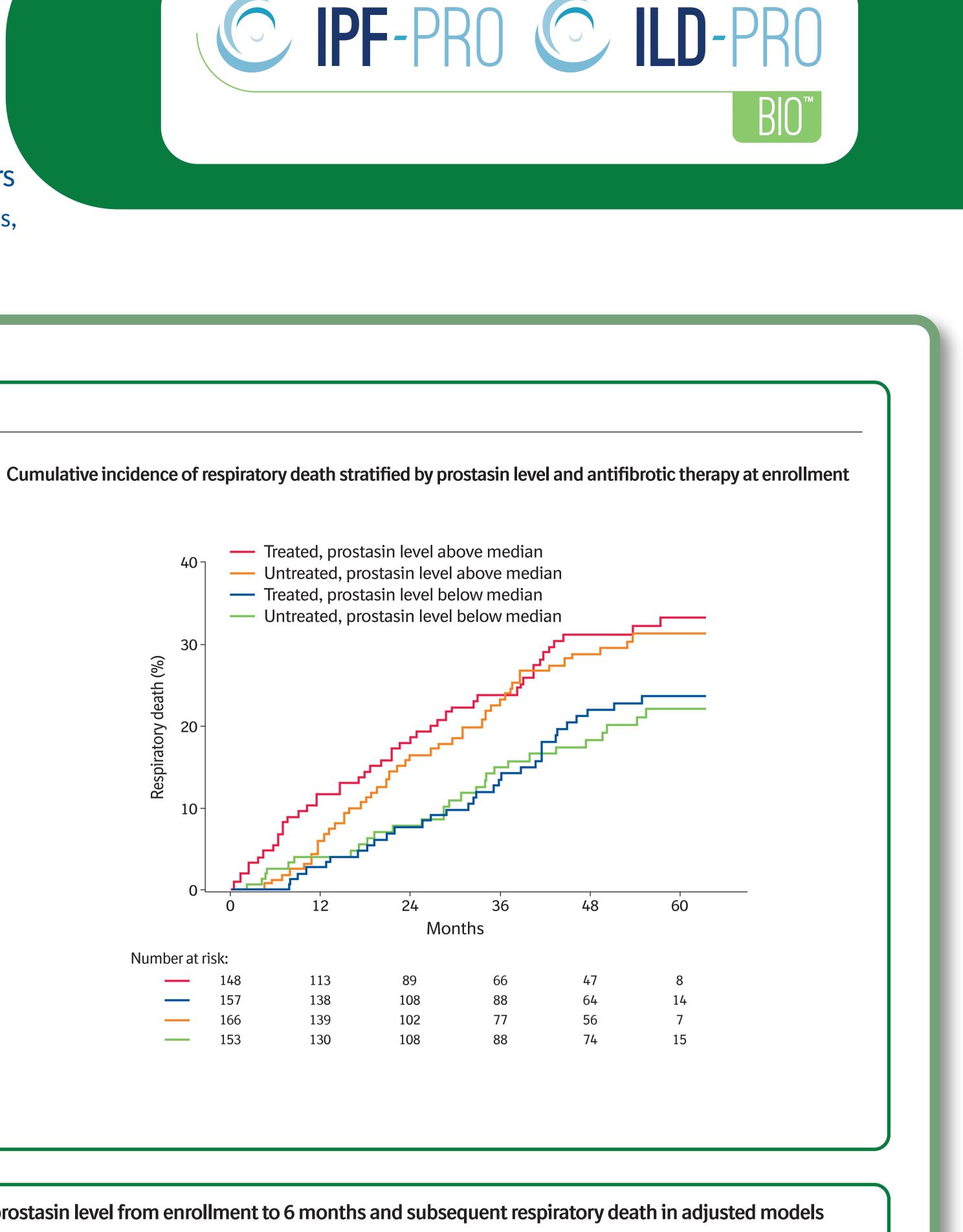
https://www.usscicomms.com/respiratory/ATS2024

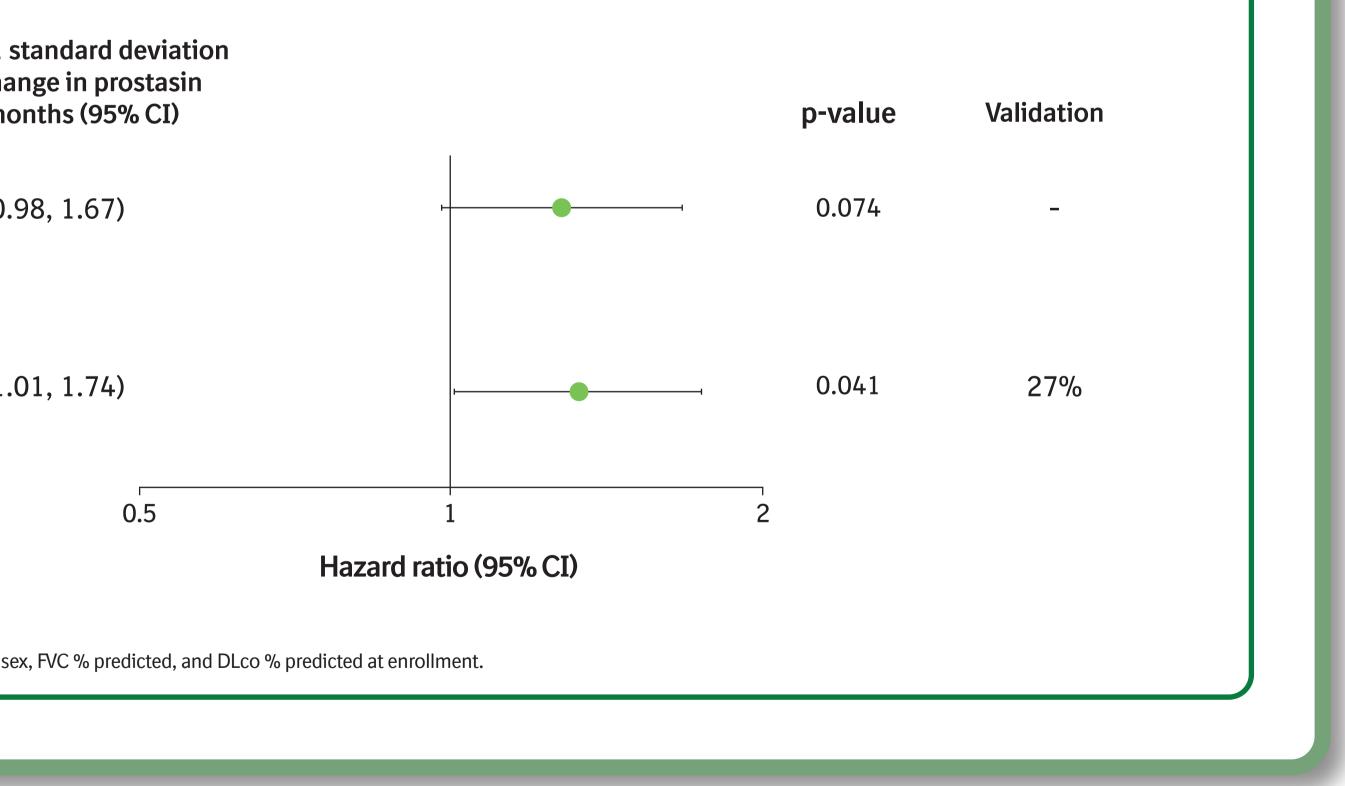
		Characteristics at enrollment (N=624)		Prostasin level at enrollment and risk of respiratory death	
$\frac{Male}{White^*} = \frac{464(74.4)}{500(91.1)}$ Ever smoker ¹ = 416(66.8) PVC% predicted = 72.5(18.5) DLco % predicted = 72.5(18.5) DLco % predicted = 72.5(18.5) DLco % predicted = 72.5(2.2) Pirfenidone = 145(22.2) Prostasin level (ug/L) = 466(159) Dta as ease n(SD) orn (%L %+50 analyzed. H+523 shalyzed. Dta as ease n(SD) orn (%L %+50 analyzed. H+523 shalyzed. Hazard ratio per 1 standard devisition difference in prostasin level at enrollment and respiratory death in unadjusted and adjusted models Hazard ratio per 1 standard devisition difference in prostasin level at enrollment (95% CD) Unadjusted model = 1.37(1.19, 1.57) Adjusted model* = 1.20(1.04, 1.40) 0.5 = 1 = 2				Cumulative incidence of respiratory death stratified by prostasin	
$\frac{\text{Male}}{\text{White'}} = \frac{464(74.4)}{500(91.1)}$ $\frac{\text{Fvc} smoker^{\dagger}}{\text{Ever smoker}^{\dagger}} = \frac{416(66.8)}{146(66.8)}$ $\frac{\text{Fvc}(5e \text{ predicted}}{\text{T2.5}(18.5)}$ $\frac{\text{DLco} %}{\text{Protasin level}} = \frac{43.6(15.1)}{132(2.2)}$ $\frac{\text{Protasin level}}{\text{Protasin level}} = \frac{145(23.2)}{12}$ $\frac{\text{Protasin level}}{\text{Protasin level}} = \frac{145(23.2)}{12}$ $\frac{\text{Protasin level}}{132} = \frac{222}{28} = \frac{19}{13} = \frac{153}{126}$ $\frac{222}{28} = \frac{19}{13} = \frac{153}{126}$ $\frac{153}{228} = \frac{225}{126} = \frac{133}{126}$ $\frac{153}{122} = \frac{153}{126} = \frac{153}{126}$ $\frac{153}{122} = \frac{153}{126} = \frac{153}{126}$		Age (years)	69.8 (7.8)		
$\frac{\boxed{\text{Ever smoker}^{1}}{\text{FvC % predicted}} + \frac{1416}{72.5(18.5)} \\ \frac{\boxed{\text{DLco \% predicted}}{12.5(3.2)} \\ \frac{\boxed{\text{DLco \% predicted}}{145(23.2)} \\ \frac{\boxed{\text{Pirfenidone}}{145(23.2)} \\ \frac{\boxed{\text{Pirfenidone}}{12} \\ \frac{12}{28} \\ \frac{28}{216} \\ \frac{131}{176} \\ \frac{28}{28} \\ \frac{131}{216} \\ \frac{131}{176} \\ \frac{28}{28} \\ \frac{131}{216} \\ \frac{131}{176} \\ \frac{131}{2} \\ \frac{28}{28} \\ \frac{131}{216} \\ \frac{131}{176} \\ \frac$		Male	464 (74.4)	— Prostasin level above median	
$\frac{PVC\% \text{ predicted}}{DLco\% \text{ predicted}} = \frac{72.5 (18.5)}{24.3 (15.1)}$ $\frac{DLco\% \text{ predicted}}{136 (15.1)} = \frac{1}{316 (12.2)}$ $\frac{Pirfenidone}{Pirfenidone} = \frac{145 (23.2)}{145 (23.2)}$ $\frac{Pirostasin level (ug/L)}{466 (159)} = \frac{145 (23.2)}{466 (159)}$ $Dth are mean (SD) arn (%). The S49 analyzed. The S23 analyzed the second s$		White*	500 (91.1)	30 -	
$\frac{PVC\% \text{ predicted}}{Dico\% \text{ predicted}} = \frac{725 (18.5)}{12 (25.2)}$ $\frac{Pircentiating antifibrotic therapy}{1000 (10$		Ever smoker ⁺	416 (66.8)	مر مر مر	
Taking antifibrotic therapy $302 (48.4)$ Nintedanib $157 (25.2)$ Pirfenidone $145 (23.2)$ Number at risk: $= 314$ 310 252 208 191 176 Data are mean (SD) orn (%). "N=549 analyzed.Meclan follow-up: 37.2 months.Meclan follow-up: 37.2 months.Associations between prostasin level at enrollment and respiratory death in unadjusted and adjusted modelsHazard ratio per 1 standard deviation difference in prostasin level at enrollment (95% CD)P-valueValidationUnadjusted modelsAsjusted model*1.20 (1.04, 1.40) 0.5 0.014 4.7% 0.512		FVC % predicted	72.5 (18.5)	Ö 20- € 20-	
Taking antifibrotic therapy 302 (48.4) Nintedanib 157 (25.2) Pirfenidone 145 (23.2) Prostasin level (ug/L) 466 (159) Data are mean (SD) or n (%). 't+569 analyzed. 'K+623 analyzed. Median follow-up: 37.2 months. Medivat		DLco % predicted	43.6 (15.1)	And a second secon	
Pirfenidone 145 (23.2) Prostasin level (ug/L) 466 (159) Data are mean (SD) or n (%), 'N-549 analyzed. 'N-623 analyzed. Mumber at risk: Associations between prostasin level at enrollment and respiratory death in unadjusted and adjusted models Median follow-up: 37.2 months. Hazard ratio per 1 standard deviation difference in prostasin level at enrollment (95% CD) p-value Validation Unadjusted model 1.37 (1.19, 1.57)		Taking antifibrotic therap	y 302 (48.4)		
Pirfenidone 145 (23.2) Months Prostasin level (ug/L) 466 (159) 143 Data are mean (SD) or n (%), 1%1-549 analyzed. IN-623 analyzed. Median follow-up: 37.2 months. Median follow-up: 37.2 months. Associations between prostasin level at enrollment and respiratory death in unadjusted and adjusted models P-value Validation Hazard ratio per 1 standard deviation difference in prostasin level at enrollment (95% CI) p-value Validation Unadjusted model 1.37 (1.19, 1.57)		Nintedanib	157 (25.2)		
Prostasin level (ug/L) 466 (159)		Pirfenidone	145 (23.2)		
Data are mean (SD) or n (%). *N=549 analyzed. 1N=623 analyzed. Median follow-up: 37.2 months. Associations between prostasin level at enrollment and respiratory death in unadjusted and adjusted models Image: Color (%) analyzed (%) analyzed (%) analyzed (%) and (%		Prostasin level (ug/L)	466 (159)	<u> </u>	
deviation difference in prostasin level at enrollment (95% CI) p-value Validation Unadjusted model 1.37 (1.19, 1.57) - <0.001 97% Adjusted model* 1.20 (1.04, 1.40) - 0.014 47% 0.5 1 2 2	Da	ta are mean (SD) or n (%). *N=549 analyzed. ⁺ N	N=623 analyzed.	Median follow-up: 37.2 months.	
Adjusted model* 1.20 (1.04, 1.40) 0.014 47%	\subset				
0.5 1 2	\subset	ssociations between prostasin le Haza deviati	evel at enrollment and respiratory de ard ratio per 1 standard on difference in prostasin	eath in unadjusted and adjusted models	
		sociations between prostasin le Haza deviati level	evel at enrollment and respiratory de ard ratio per 1 standard on difference in prostasin l at enrollment (95% CI)	eath in unadjusted and adjusted models p-value Validation	
		ssociations between prostasin le Haza deviati level Unadjusted model	evel at enrollment and respiratory de ard ratio per 1 standard on difference in prostasin 1 at enrollment (95% CI) 1.37 (1.19, 1.57)	eath in unadjusted and adjusted models p-value Validation <	
		ssociations between prostasin le Haza deviati level Unadjusted model	evel at enrollment and respiratory de ard ratio per 1 standard on difference in prostasin 1 at enrollment (95% CI) 1.37 (1.19, 1.57) 1.20 (1.04, 1.40)	eath in unadjusted and adjusted models p-value Validation <	
*Adjusted for age, sex, FVC % predicted, and DLco % predicted at enrollment.	\subset	ssociations between prostasin le Haza deviati level Unadjusted model	evel at enrollment and respiratory de ard ratio per 1 standard on difference in prostasin 1 at enrollment (95% CI) 1.37 (1.19, 1.57) 1.20 (1.04, 1.40) 0.5	eath in unadjusted and adjusted models p-value Validation <0.001	

4. O'Brien EC et al. BMJ Open Respir Res 2016;3:e000108 5. Kang G et al. J Hum Genet 2015;60:729-738.


ACKNOWLEDGEMENTS AND DISCLOSURES

The IPF-PRO/ILD-PRO Registry is supported by Boehringer Ingelheim Pharmaceuticals, Inc and run in collaboration with the Duke Clinical Research Institute and enrolling centers. The authors did not receive payment for the development of this poster. Elizabeth Ng and Wendy Morris of Fleishman-Hillard, London, UK, provided editorial assistance, which was given the opportunity to review the poster for medical and scientific accuracy as well as intellectual property considerations. Jamie L Todd is a faculty member of the Duke Clinical Research Institute, which receives funding support from AstraZeneca and CareDx and participation in advisory boards for Altavant, Avalyn, Natera, Sanofi, Theravance.




IPF-PRO Registry enrolling centers: Albany Medical Center, Albany, NY; Baylor College of Medical Center, Albany, NY; Baylor College of Medical Center, New York, NY; Duke University Medical Center, Albany, NY; Baylor College of Medical Center & The Medical College of Wisconsin Community Physicians, Milwaukee, WI; Houston Methodist Lung Center, Houston, TX; Lahey Clinic, Burlington, MA; Loyola University of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, CO; NYU Medical Center, New York, NY; Piedmont of South Carolina, Charleston, SC; National Jewish Health, Denver, SOU M Healthcare, Austell, GA; Pulmonary Associates of Stamford, CT; PulmonIx LLC, Greensboro, NC; Renovatio Clinical, The Woodlands, TX; Salem Chest and Southeastern Clinical, The Woodlands, T Philadelphia, PA; The Oregon Clinic, Portland, OR; Tulane University of California, Davis, Sacramento, CA; University of California Los Angeles, Los Angeles, CA; University of Chicago, IL; University of Cincinnati Medical Center, Cincinnati, OH; University of Louisville, Louisville, Louisville, KY; University of Miami, FL; University of Minnesota, Minneapolis, MN; University of Virginia, Charlottesville, VA; UT Southwestern Medical Center, Dallas, TX; Vanderbilt University Medical Center, Jallas, TX; Vanderbilt University Medical Center, Jallas, TX; Vanderbilt University of Virginia, Charlottesville, VA; UT Southwestern Medical Center, Dallas, TX; Vanderbilt University Medical Center, Jallas, TX; Vanderbilt University of Virginia, Charlottesville, VA; UT Southwestern Medical Center, Dallas, TX; Vanderbilt University Medical Center, Jallas, TX; Vanderbilt University Medical Center Nashville, TN; Vermont Lung Center, Colchester, VT; Wake Forest University, Winston Salem, NC; Washington University, St. Louis, MO; Weill Cornell Medical College, New York, NY; Wilmington Health and PMG Research, Wilmington, NC; Yale School of Medicine, New Haven, CT.

ollment

Associations between change in prostasin lev				
	Hazard ratio per 1 s difference in char level over 6 mo			
Minimally adjusted mod	el* 1.28 (0.9			
Fully adjusted model ⁺	1.33 (1.0			
*Adjusted for prostasin at enrollment. [†] Adj	justed for prostasin, age, sex			

