Predictors of mortality in idiopathic pulmonary fibrosis: forced vital capacity decline and other surrogate endpoints – a literature review

Michael Baldwin,¹ Sue Langham,² Nina Patel,³ Nick Pooley,² Pilar Rivera-Ortega⁴

INTRODUCTION

Fibrosing ILDs such as IPF are rare, debilitating diseases that result in progressive loss of lung function and are ultimately fatal. Ideally, the aim of treatment is to prolong survival, but the long follow-up and large sample sizes required to show treatment differences mean that overall survival may not be practical as an endpoint in clinical trials.

AIM

• To identify clinical trial endpoints that were most strongly associated with an increased risk of death in patients with IPF, by means of a targeted literature review.

METHODS

- Literature searches were conducted to identify studies (systematic reviews/metaanalyses, long-term [>1 year] randomized controlled trials or observational studies) from 2010 to 2023 in patients with fibrotic ILDs with any survival outcome, with or without a surrogate outcome for survival.
- Conference abstracts, case reports/series, editorials, commentaries and letters were not included.
- The following databases were searched for relevant randomized controlled trials:
- Embase, MEDLINE In-Process Citations, MEDLINE Daily Update & Epub Ahead of Print, Cochrane Central Register of Controlled Trials, PubMed
- Supplementary searches were undertaken on the following trial registers:
- http://www.clinicaltrials.gov/
- WHO International Clinical Trials Registry Platform.
- The following databases were searched for relevant systematic reviews of randomized controlled trials:
- Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, Epistemonikos, International Prospective Register of Systematic Reviews.

CONCLUSIONS

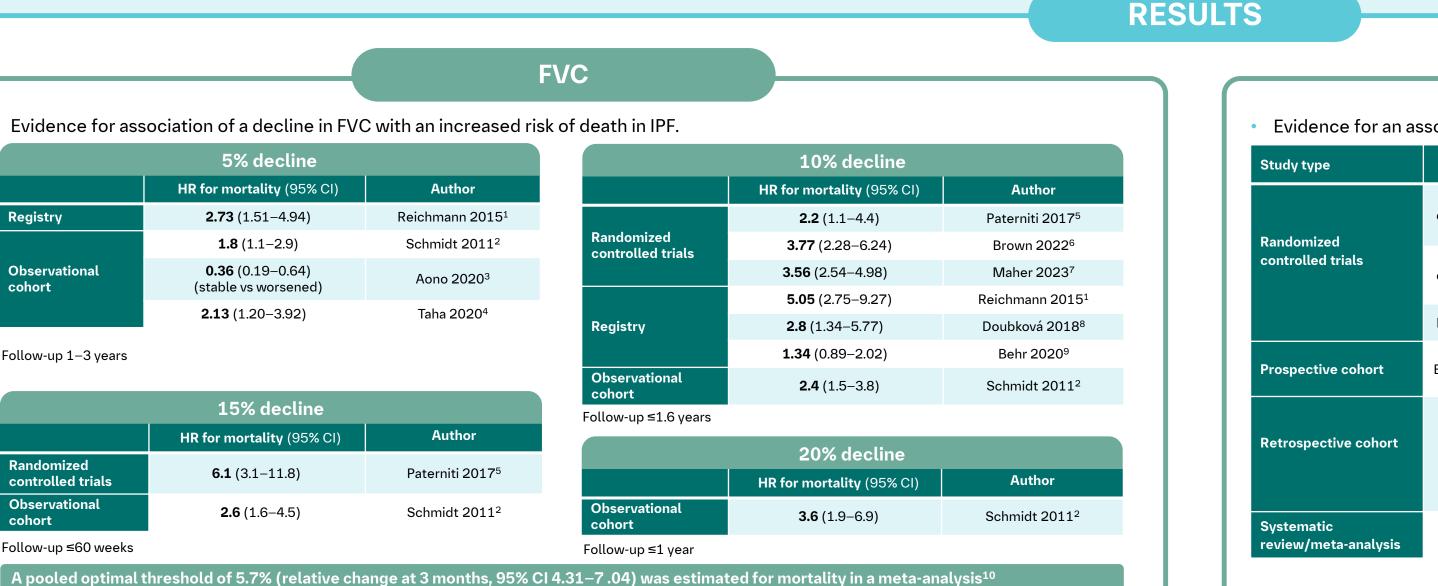
- There is a large evidence base supporting the use of FVC decline as a surrogate endpoint in IPF. Overall, a 10% decrease in FVC over 52 weeks results in a roughly three-fold increase in risk of mortality. In addition, shorter-term changes in FVC (over 3 months) have been associated with a significant increased risk of mortality.
- FVC decline and other surrogate endpoints (such as increase in CPI, decrease in DLco or decline in 6MWD) can predict mortality in IPF; however, large sample sizes may often still be required to achieve meaningful impact in these endpoints.
- The use of a second variable, in addition to FVC decline, may offer increased sensitivity to predict mortality.
- Further evaluation of composite endpoints to provide efficiency in demonstrating treatment differences in clinical trials is warranted.

Scan QR code or visit URL for a webpage featuring all

Scan QR code or visit URL for a device-friendly version of this poster including slides with voiceover

	5%
	HR for mo
Registry	2.73 (
	1.8
Observational cohort	0.36 ((stable)
	2.13 (1

Follow-up 1–3 years


	15
	HR for mo
Randomized controlled trials	6.1 (
Observational cohort	2.6
Follow-up ≤60 weeks	

Evidence for asso	ciation of a dec	line in DLco	with an inc	creased risk of death in IPF.				
Study type	Author	Follow-up	N	Findings				
	Doubková 2018 ⁸	Not reported	514	Deterioration in DLco of ≥15% at Month 12 associated with decreased overall survival HR 3.691; 95% CI 1.491–9.134; P=0.005				
Registry	Zurkova 2019 ¹¹	22.8 months	601	In patients treated with pirfenidone, mortality was associated with: ■ DLco decline ≥10% at 6, 12, 18 and 24 months (P<0.05)				
			001	 DLco decline ≥15% at 6, 18 and 24 months (P<0.05), but not 12 months (P=0.182) Decline in DLco% in the previous year associated with subsequent 1-year survival (vs stable DLco) 				
Retrospective cohort	Schmidt 2014 ¹²	Up to 4 years	734	 Baseline to Year 1: HR 0.72; 95% CI 0.63–0.79; P<0.0001 Year 1–2: HR 0.78; 95% CI 0.64–0.87; P=0.1161 Year 2–3: HR 0.75; 95% CI 0.57–0.87; P=0.0102 				
	Sharp 2017 ¹³	22.6 months	nths 167	22.6 months 167	22.6 months 167	nonths 167	Change in DLco associated with survival at 12 months • Multivariate analysis: HR 0.984; 95% CI 0.972–0.997; P=0.014	
		Association between mortality and relative DLco decline, HR (95% CI) At 6 months At 12 months						
Single-center cohort	Schmidt 2011 ²	Up to 1 year	321	 10%: 1.7 (1.1–2.5) P=0.011 15%: 1.6 (1.1–2.5) P=0.029 20%: 1.8 (1.1–3.0) P=0.030 25%: 2.3 (1.2–4.2) P=0.010 10%: 2.2 (1.4–3.5) P=0.001 15%: 2.3 (1.5–3.7) P<0.001 20%: 3.0 (1.8–4.9) P<0.001 25%: 3.5 (2.0–6.1) P<0.001 				
Systematic review/meta-analysis	Khan 2022 ¹⁰	8–21 months	2,958 (23 studies	 2.5% relative decline in DLco over 3 months associated with: 7% increased risk of mortality (HR 1.07; 95% CI 1.04–1.11) 7% increased likelihood of disease progression (OR 1.07; 95% CI 1.02, 1.12) 				

REFERENCES

- 1. Reichmann WM, et al. BMC Pulm Med 2015; 15:167; 2. Schmidt SL, et al Eur Respir J 2011; 38:176–183; 3. Aono Y, et al. Ther Adv Respir Dis 2020; 14:1753466620953783; 4. Taha N, et al. Respir Res 2020; 21:119; 5. Paterniti MO, et al. Ann Am Thorac Soc 2017; 14:1395–1402;
- 6. Brown KK, et al. Respirology 2022; 27:294–300; 7. Maher TM, et al. Respirology 2023; 28:1147–1153;
- 9. Behr J, et al. Eur Respir J 2020; 56:1902279; 10. Khan FA, et al. Am J Respir Crit Care Med 2022; 205:936–948; 11. Zurkova M, et al. Respir Res 2019; 20:16;
- 12. Schmidt SL. et al. Chest 2014: 145:579-585 13. Sharp C, et al. ERJ Open Res 2017; 3:00096–02016; 14. du Bois RM, et al. Am J Respir Crit Care Med 2011; 183:1231-1237;

¹Value and Patient Access, Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany; ²Market Access, Maverex Limited, Newcastle, United Kingdom; ³Boehringer Ingelheim am Rhein, Germany; ²Market Access, Maverex Limited, Newcastle, United Kingdom; ³Boehringer Ingelheim and Patient Access, Maverex Limited, Newcastle, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester University NHS Foundation Trust, Manchester, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ³Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, United Kingdom; ⁴Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA; ⁴Wythenshawe Hospital, Manchester, Manchester, Manchester, Manchester, Manchester, Manchester, Manchester, Manchester, Manchester, Manchest

- 8. Doubková M, et al. Clin Respir J 2018; 12:1526-1535;
- 15. du Bois RM, et al. Eur Respir J 2014; 43:1421–1429;
- 16. Nathan SD, et al. Respir Med 2015; 109:914–922; 17. Brunetti G, et al. Eur Respir J 2013; 42:P3693;
- 18. Gao J, et al. Eur Respir J 2019; 54:PA1356;
- 19. Chandel A, et al. ERJ Open Res 2023; 9:00124–02023:
- 20. Durheim MT, et al. Lancet Respir Med 2015; 3:388–396;
- 21. Manzetti GM, et al. Eur Respir J 2022; 60:1881;
- 22. Jacob J, et al. Eur Respir J 2017; 49:1601011;
- 23. Sverzellati N, et al. Eur Radiol 2020; 30:2669-2679.

ABBREVIATIONS

6MWD, 6-minute walk distance; 6MWT, 6-minute walk time; AUC, area under the curve; BMI, body mass index; CI, confidence interval; CPI, composite physiologic index; DLco, diffusing capacity of the lung for carbon monoxide; DO-GAP, Distance-Oxygen-Gender-Age-Physiology; FVC, forced vital capacity; GAP, Gender-Age-Physiology; HR, hazard ratio; ILD, interstitial lung disease; IPF, idiopathic pulmonary fibrosis; OR, odds ratio; PVV, pulmonary vessel volume; RISE, risk stratification score; VRS, vessel-related structures (computer-derived variable).

6	٧V	VD

Evidence for an association of a decline in 6MWD with an increased risk of death in IPF.

Author	Follow-up	N	Findings
du Bois 2011 ¹⁴	72 weeks	822	Association of 24-week decline in 6MWD with risk of death at 1 year (vs decline ≤25m): Decline >50m: HR 4.27; 95% CI 2.57–7.10; P<0.001 Decline 26–50m: HR 3.59; 95% CI 1.95–6.63; P<0.001
du Bois 2014 ¹⁵	24 weeks	748	Association of 24-week decline in 6MWD with risk of death at 1 year (vs decline ≤25m): Decline >50m: HR 2.73; 95% CI 1.60–4.66; P<0.01 Decline 26–50m: HR 2.94; 95% CI 1.56–5.53; P<0.01
Nathan 2015 ¹⁶	48 weeks	338	Association of 24-week decline in 6MWD with risk of death at 1 year (vs decline ≤50m): Decline >50m: HR 2.53; 95% CI 0.94–6.79; P=0.066
Brunetti 2013 ¹⁷	6–9 months	30	Positive relationship between survival and 6MWD, distance saturation product, 6MWD × body weight at 6–9 months, and a strong correlation between survival and difference in 6MWD from baseline to 6–9 months (r=0.74, P<0.006)
Gao 2019 ¹⁸	2 years	92	 ≥5% decline in 6MWD after 1 year associated with reduced survival (38.4 months vs 46.2 months, P=0.002) ≥5% decline in 6MWD predicted survival at 2 years (p=0.019), after adjustment for baseline age, gender, BMI, FVC and DLco Patients with a ≥10% decline in lowest room air oxygen saturation during 6MWT had shorter survival than those without (23.8 months vs 44.3 months, P=0.005)
Khan 2022 ¹⁰	8–21 months	2,958 (23 studies)	Increased risk of mortality associated with decline in 6MWT over 3 months seen in four cohorts (adjusted HR 1.09 per 20m decline; 95% CI 1.01–1.17)

Composite endpoints

DISCLOSURES

M Baldwin and N Patel are employees of Boehringer Ingelheim. S Langham and N Pooley have received consultancy fees from Boehringer Ingelheim

ACKNOWLEDGMENTS

This study was supported and funded by Boehringer Ingelheim International GmbH. The authors meet criteria for authorship as recommended by the International Committee of Medical Journal Editors. The authors did not receive payment related to the development of the poster. John Carron, PhD, of Nucleus Global (UK) provided writing, editorial support and formatting assistance, which was contracted and funded by Boehringer Ingelheim. Boehringer Ingelheim was given the opportunity to review the poster for medical and scientific accuracy as well as intellectual property considerations.