Efficacy and Safety of Empagliflozin According to Background Diuretic Use in Patients with Heart Failure and a Reduced Ejection Fraction

Post Hoc Analysis of the EMPEROR-REDUCED Trial

Nitish K. Dhingra and Subodh Verma

on behalf of the EMPEROR Trial Committees & Investigators

No COIs to disclose for presenting author

Background

- In EMPEROR-Reduced¹ and DAPA-HF², SGLT2 inhibitors reduced the rates of CV death or HHF by approximately 25% among patients with HFrEF
- Patients with HFrEF are often prescribed diuretics for sign/symptom control
- Whether the efficacy and safety of SGLT2 inhibitors vary by baseline use and intensity of diuretics is an important and unanswered question

Background

- In EMPEROR-Reduced¹ and DAPA-HF², SGLT2 inhibitors reduced the rates of CV death or HHF by approximately 25% among patients with HFrEF
- Patients with HFrEF are often prescribed diuretics for sign/symptom control
- Whether the efficacy and safety of SGLT2 inhibitors vary by baseline use and intensity of diuretics is an important and unanswered question

This post hoc analysis of EMPEROR-Reduced was conducted to investigate whether background diuretic therapy alters the efficacy and safety of empagliflozin in HFrEF

EMPEROR-Reduced¹: Study design

• EMPEROR-Reduced randomized patients with an LVEF \leq 40%, NYHA II-IV symptoms and elevated natriuretic peptide levels to empagliflozin 10mg or matching placebo

EMPEROR-Reduced¹: Central Findings

Primary Endpoint25% in riskComposite of cardiovascular death or heart failure hospitalizationP < 0.001</td>

First Secondary Endpoint Total (first and recurrent heart failure hospitalizations) 30% ↓ in risk P < 0.001

Second Secondary Endpoint

Slope of decline in glomerular filtration rate over time

P < 0.001 (50% ↓ in renal events)

Also achieved success on composite renal endpoint, KCCQ clinical summary score at 52 weeks, and total number of hospitalizations for any reason (all nominal P<0.01)

Methods of current analysis

Patients were divided into 4 groups based on their baseline diuretic use

Diuretic dose equivalents were defined as follows: Furosemide doses, 40 mg IV or 80 mg PO; dose equivalents, bumetanide 1 mg, torsemide 20 mg, azosemide 60 mg or etacrynic acid 100 mg. Patients receiving neither a loop diuretic nor a non-loop diuretics were assigned to the 'no diuretic' group. Patients receiving a non-loop diuretic but no loop diuretic were assigned to the '<40 mg equivalent' group. MRA was not classified as a diuretic.

Baseline characteristics (1/2)

	No diuretic (n=482)	<40 mg equivalent (n=731)	=40 mg equivalent (n=1411)	>40 mg equivalent (n=1032)	<i>p</i> -trend
Demographics					
Female	133 (27.6)	170 (23.3)	351 (24.9)	220 (21.3)	0.027
Age, years	68.0 (60.0–74.0)	69.0 (62.0–77.0)	68.0 (60.0–75.0)	68.0 (59.0–75.0)	0.405
HF characteristics					
LVEF, %	28.1±5.6	$\textbf{28.3}\pm\textbf{5.8}$	$\textbf{27.3} \pm \textbf{6.1}$	$\textbf{26.8} \pm \textbf{6.2}$	<0.001
Cause of HF					0.002
Ischaemic	241 (50.0)	362 (49.5)	700 (49.6)	585 (56.7)	
Non-ischaemic	241 (50.0)	369 (50.5)	711 (50.4)	447 (43.3)	
NYHA					<0.001
Class II	398 (82.6)	591 (80.8)	1088 (77.1)	673 (65.2)	
Class III	83 (17.2)	136 (18.6)	315 (22.3)	352 (34.1)	
Class IV	1 (0.2)	4 (0.5)	8 (0.6)	7 (0.7)	
NT-proBNP, pg/mL	1555.00	1714.00	1926.00	2175.00	<0.001
	(940.00–2636.00)	(1072.00–3106.00)	(1101.00–3450.00)	(1335.00–4385.50)	
KCCQ-CSS	82.3 (63.0–92.7)	81.0 (66.4–91.7)	72.9 (53.6–89.3)	67.7 (49.0–83.6)	<0.001
HHF in last 12 months	97 (20.1)	211 (28.9)	406 (28.8)	410 (39.7)	<0.001

Data are n (%), mean ± standard deviation, or median (Q1–Q3).

HF, heart failure; HHF, hospitalization for heart failure; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire- Clinical Summary Score; LVEF, left ventricular ejection fraction; NT-pro-BNP, N-terminal pro-B type natriuretic peptide; NYHA, New York Heart Association

Baseline characteristics (2/2)

	No diuretic	<40 mg equivalent	=40 mg equivalent	>40 mg equivalent	<i>p</i> -trend
	(n=482)	(n=731)	(n=1411)	(n=1032)	
Comorbidities					
Diabetes	196 (40.7)	318 (43.5)	693 (49.1)	618 (59.9)	< 0.001
CKD*	188 (39.0)	361 (49.4)	730 (51.7)	658 (63.8)	< 0.001
eGFR, mL/min/1.73 m ²	$\textbf{68.2} \pm \textbf{19.9}$	63.9 ± 20.9	$\textbf{62.7} \pm \textbf{21.8}$	$\textbf{57.0} \pm \textbf{21.8}$	< 0.001
Diuretics use					
Receiving loop diuretics only	0 (0)	593 (81.1)	1286 (91.1)	898 (87.0)	< 0.001
Furosemide equivalent dose, mg ⁺	0	20.0	40.0	80.0	< 0.001
HFrEF medical therapy					
ACEi/ARB/ARNi	434 (90.0)	644 (88.1)	1254 (88.9)	897 (86.9)	0.126
BB	452 (93.8)	684 (93.6)	1356 (96.1)	972 (94.2)	0.449
MRA	297 (61.6)	509 (69.6)	1041 (73.8)	760 (73.6)	<0.001
ACEi/ARB/ARNi +BB/Ivabradine	417 (86.5)	615 (84.1)	1222 (86.6)	855 (82.8)	0.132
ACEi/ARB/ARNi + BB/Ivabradine +	260 (53.9)	442 (60.5)	905 (64.1)	651 (63.1)	0.002
MRA					
Device therapy					
ICD	122 (25.3)	137 (18.7)	266 (18.9)	303 (29.4)	< 0.001
CRT-D	28 (5.8)	51 (7.0)	122 (8.6)	168 (16.3)	<0.001
CRT-P	4 (0.8)	12 (1.6)	25 (1.8)	23 (2.2)	0.075

*eGFR <60 mL/min/1.73 m² or UACR >300 mg/g; [†]median. Data are n (%) or mean ± standard deviation unless otherwise stated. ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker; ARNi, angiotensin receptor-neprilysin inhibitor; BB, beta blocker; CKD, chronic kidney disease; CRT-D, cardiac resynchronization therapy defibrillator; CRT-P, cardiac resynchronization therapy pacemaker; eGFR, estimated glomerular filtration rate; ICD, implantable cardioverter-defibrillators; MRA, mineralocorticoid receptor antagonist.

Treatment efficacy: Primary endpoint*

p-trend across diuretic dose groups: 0.192

*CV death or first HHF. †Per 100 patient-years at risk. ‡Per 1 year at risk.

ARR, absolute risk reduction; CI, confidence interval; CV, cardiovascular; HHF, hospitalization for heart failure; HR, hazard ratio; NNT, number needed to treat.

Treatment efficacy: Total HHF

p-trend across diuretic dose groups: 0.082

Treatment efficacy: Time to first HHF

p-trend across diuretic dose groups: 0.036

CV outcomes (1/2)

	P	lacebo	Empagliflozin				<i>p</i> -trend
Endpoint	n/N	Events/100 py	n/N	Events/100 py	A	djusted HR (95% CI)	(by dose)
CV death or first H	HHF						
No diuretics	32/229	11.7	28/253	9.1	0.78 (0.47, 1.29)	► ●	0.192
<40 mg	76/368	16.6	53/363	10.9	0.65 (0.46, 0.92)	⊢● 1	
40 mg	177/703	21.3	120/708	13.8	0.65 (0.51, 0.82)	⊢● -1	
>40 mg	171/523	29.1	153/509	25.9	0.88 (0.71, 1.10)	⊢ ● <mark>-</mark> 1	
Total (first and red	current) HHF						
No diuretics	29	_	21	-	0.69 (0.35, 1.36)	►	0.082
<40 mg	99	_	51	-	0.53 (0.34, 0.84)	⊢ •	
40 mg	208	_	104	-	0.53 (0.38, 0.73)		
>40 mg	211	_	204	-	0.93 (0.68, 1.28)	⊢_● 1	
First HHF							
No diuretics	22/229	8.0	12/253	3.9	0.48 (0.24, 0.97)	⊢	0.036
<40 mg	54/368	11.8	33/363	6.8	0.56 (0.36, 0.87)	⊢	
40 mg	125/703	15.0	81/708	9.3	0.63 (0.47, 0.83)	⊢● -1	
>40 mg	135/523	23.0	115/509	19.5	0.84 (0.65, 1.08)	·-●-+•	
						0.125 0.25 0.5 1 2 Favors empagliflozin ← → Fav	4 ors placebo

CI, confidence interval; CV, cardiovascular; HHF, hospitalization for heart failure; HR, hazard ratio; py, patient-years.

CV outcomes (2/2)

	P	Placebo	Empagliflozin				<i>p</i> -trend
Endpoint	n/N	Events/100 py	n/N	Events/100 py	Ad	(by dose)	
CV death							
No diuretics	13/229	4.5	19/253	5.8	1.32 (0.65, 2.67)	⊢	0.700
<40 mg	35/368	6.9	31/363	6.1	0.88 (0.54, 1.42)	►	
40 mg	76/703	8.1	60/708	6.5	0.77 (0.55, 1.09)	⊢ ● <u>+</u> +	
>40 mg	78/523	11.3	73/509	10.9	0.96 (0.70, 1.32)	⊢	
All-cause mortalit	У						
No diuretics	15/229	5.2	26/253	8.0	1.51 (0.80, 2.86)	⊢	0.575
<40 mg	46/368	9.1	36/363	7.1	0.78 (0.50, 1.21)	⊢● _ <u> </u>	
40 mg	100/703	10.7	88/708	9.5	0.86 (0.65, 1.15)	⊢● <u></u>	
>40 mg	101/523	14.6	95/509	14.1	0.94 (0.71, 1.25)	F	
						0.125 0.25 0.5 1 2	4

Favors empagliflozin - Favors placebo

CI, confidence interval; CV, cardiovascular; HR, hazard ratio; py, patient-years.

KCCQ summary at 12 months

CI, confidence interval; KCCQ, Kansas City Cardiomyopathy Questionnaire; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire Clinical Summary Score; KCCQ-TSS, Kansas City Cardiomyopathy Questionnaire Total Symptom Score.

KCCQ-CSS change from baseline

p-trend across diuretic dose groups (week 52): 0.431

Labels show adjusted mean difference (95% CI) p-value.

CI, confidence interval; KCCQ-CSS, Kansas City Cardiomyopathy Questionnaire Clinical Summary Score; SE, standard error.

Changes in diuretic dosing (1/2)

Changes in diuretic dosing (2/2)

	P	Placebo	Em	pagliflozin			<i>p</i> -trend
Endpoint	n/N	Events/100 py	n/N	Events/100 py	Adju	sted HR (95% CI)	(by dose)
Time to first diure	etic dose increa	se					
<40 mg	86/368	19.7	58/363	12.6	0.59 (0.43, 0.83)		0.054
40 mg	141/703	17.0	85/708	9.8	0.58 (0.44, 0.76)	⊢● −1	
>40 mg	133/523	23.4	118/509	20.0	0.85 (0.66, 1.08)	⊢ ● +	
Time to diuretic in	nitiation						
No diuretics	77	_	54	_	0.62 (0.44, 0.88)	⊢ ••••	0.008*
Time to first disco	ontinuation of d	liuretics use (any)					
<40 mg	35/368	7.5	53/363	11.7	1.55 (1.01, 2.37)	 ;	0.040
40 mg	80/703	9.4	48/708	5.4	0.59 (0.41, 0.84)		
>40 mg	57/523	8.9	47/509	7.4	0.84 (0.57, 1.23)	⊢●┼┙	
Time to permane	nt discontinuat	ion of diuretics use					
<40 mg	13/368	2.6	37/363	7.8	2.92 (1.55, 5.50)	· · · · •	0.029
40 mg	41/703	4.6	30/708	3.3	0.74 (0.46, 1.19)		
>40 mg	23/523	3.4	25/509	3.8	1.17 (0.66, 2.07)	⊢	
Time to de-escala	tion of diuretic	s (discontinuation of	or dose decre	ease)			
<40 mg	69/368	15.6	93/363	22.4	1.40 (1.03 <i>,</i> 1.92)	⊢	0.505
40 mg	135/703	16.6	109/708	13.0	0.80 (0.62, 1.03)	⊢ ● -ŀ	
>40 mg	130/523	22.7	143/509	26.3	1.14 (0.90, 1.44)	⊢	
					0. More frequent with	25 0.5 1 2 placebo ← → More f	4 8 frequent with empaglifloz

*p-value for empagliflozin vs placebo.

CI, confidence interval; HR, hazard ratio; py, patient-years.

Adverse events of interest

	No diuretics		<40 m	ıg equiv.	=40 m	g equiv.	>40 mg equiv.		
	Placebo	Empagliflozin	Placebo	Empagliflozin	Placebo	Empagliflozin	Placebo	Empagliflozin	
Total with AEs	168 (73.7)	181 (71.5)	276 (75.2)	278 (76.6)	541 (77.0)	516 (72.9)	447 (85.8)	422 (82.9)	
ΑΚΙ	6 (2.6)	4 (1.6)	6 (1.6)	4 (1.1)	21 (3.0)	11 (1.6)	22 (4.2)	15 (2.9)	
Volume depletion	19 (8.3)	21 (8.3)	41 (11.2)	37 (10.2)	64 (9.1)	65 (9.2)	58 (11.1)	71 (13.9)	
Hypotension	16 (7.0)	19 (7.5)	35 (9.5)	32 (8.8)	58 (8.3)	60 (8.5)	53 (10.2)	62 (12.2)	
Hyperkalemia	12 (5.3)	15 (5.9)	27 (7.4)	26 (7.2)	40 (5.7)	37 (5.2)	44 (8.4)	28 (5.5)	
Genital infection	2 (0.9)	7 (2.8)	2 (0.5)	3 (0.8)	4 (0.6)	9 (1.3)	4 (0.8)	12 (2.4)	
Confirmed hypoglycemia	1 (0.4)	4 (1.6)	6 (1.6)	4 (1.1)	8 (1.1)	9 (1.3)	12 (2.3)	10 (2.0)	
DKA	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	

Values are n (%). Adverse events are shown up to 7 days after discontinuation of study medication.

AE, adverse event; AKI, acute kidney injury; DKA, diabetic ketoacidosis.

- Central findings of this analysis of EMPEROR-Reduced:
 - Consistent benefit of empagliflozin on the primary endpoint of time to HHF or CV death regardless of background diuretic therapy
 - For outcomes of total HHF and time to first HHF, suggestion of potential attenuation of effect of empagliflozin among those on the highest doses of diuretics
 - Empagliflozin demonstrated a diuretic-sparing effect in EMPEROR-Reduced

- Present findings mirror those of previous analyses of DAPA-HF³
 - Time to first HHF and total HHF was not evaluated in this analysis

		Hazard ratio (95% CI)	Int. P value
Primary composite outcome			
All patients		0.74 (0.65, 0.85)	
No diuretic		0.57 (0.36, 0.92)	
Diuretic (any dose)	-	0.78 (0.68, 0.90)	0.23
<40mg	-+-	0.83 (0.63, 1.10)	
40mg		0.77 (0.60, 0.99)	
>40mg		0.78 (0.63, 0.97)	
Hospitalization or urgent HF vis	sit		
All patients		0.70 (0.59, 0.83)	
No diuretic		0.49 (0.26, 0.91)	
Diuretic (any dose)		0.75 (0.63, 0.90)	0.21
<40mg		0.78 (0.55, 1.12)	
40mg		0.68 (0.49, 0.94)	
>40mg		0.81 (0.62, 1.05)	
CV death			
All patients		0.82 (0.69, 0.98)	
No diuretic		0.61 (0.32, 1.14)	
Diuretic (any dose)		0.86 (0.71, 1.03)	0.31
<40mg	-+-	0.82 (0.57, 1.18)	
40mg		0.87 (0.63, 1.21)	
>40mg		0.90 (0.67, 1.20)	
Death from any cause			
All patients		0.83 (0.71, 0.97)	
No diuretic		0.71 (0.41, 1.21)	
Diuretic (any dose)		0.85 (0.71, 1.00)	0.53
<40mg	-+-	0.86 (0.61, 1.20)	
40mg		0.80 (0.59, 1.08)	
>40mg		0.91 (0.70, 1.18)	
0.2	0.4 0.6 0.81.0	1.6	
	Hazard rat	tio	
	Dapagliflozin better P	lacebo better	

Figure 2. Forest plot of efficacy outcomes according to diuretic therapy at baseline.

Baseline Differences	 Attenuation of effect on HF hospitalizations could reflect baseline differences between groups, with more severe stages of HF being harder to modify However, empagliflozin has been shown to have consistent efficacy across important subgroups in previous analyses⁴⁻⁹, with no suggestion of decreased efficacy amongst patients with more advanced HF syndromes
Mechanistic Overlap	 Attenuation of effect on HF hospitalizations could reflect mechanistic overlap, with high diuretic doses dampening empagliflozin's osmotic diuretic effects However, previous findings have shown that combination with loop diuretics potentiates SGLT2i-associated natriuresis rather than dampens it¹⁰ In addition, SGLT2 inhibitors' mechanisms of effect likely include a variety of pleiotropic effects beyond diuresis including alteration of circulating proteomics, enhancement of nutrient deprivation signaling and others¹¹⁻¹³
Statistical Chance	 Analyses were post hoc and not corrected for multiplicity A similar attenuation not seen in DAPA-HF

Baseline Differences	 Attenuation of effect on HF hospitalizations could reflect baseline differences between groups, with more severe stages of HF being harder to modify However, empagliflozin has been shown to have consistent efficacy across important subgroups in previous analyses⁴⁻⁹, with no suggestion of decreased efficacy amongst patients with more advanced HF syndromes 	
Mechanistic Overlap	 Attenuation of effect on HF hospitalizations could reflect mechanistic overlap, with high diuretic doses dampening empagliflozin's osmotic diuretic effects However, previous findings have shown that combination with loop diuretics potentiates SGLT2i-associated natriuresis rather than dampens it¹⁰ In addition, SGLT2 inhibitors' mechanisms of effect likely include a variety of pleiotropic effects beyond diuresis including alteration of circulating proteomics, enhancement of nutrient deprivation signaling and others¹¹⁻¹³ 	
Statistical Chance	 Analyses were post hoc and not corrected for multiplicity A similar attenuation not seen in DAPA-HF 	

Baseline Differences	 Attenuation of effect on HF hospitalizations could reflect baseline differences between groups, with more severe stages of HF being harder to modify However, empagliflozin has been shown to have consistent efficacy across important subgroups in previous analyses⁴⁻⁹, with no suggestion of decreased efficacy amongst patients with more advanced HF syndromes
Mechanistic Overlap	 Attenuation of effect on HF hospitalizations could reflect mechanistic overlap, with high diuretic doses dampening empagliflozin's osmotic diuretic effects However, previous findings have shown that combination with loop diuretics potentiates SGLT2i-associated natriuresis rather than dampens it¹⁰ In addition, SGLT2 inhibitors' mechanisms of effect likely include a variety of pleiotropic effects beyond diuresis including alteration of circulating proteomics, enhancement of nutrient deprivation signaling and others¹¹⁻¹³
Statistical Chance	 Analyses were post hoc and not corrected for multiplicity A similar attenuation not seen in DAPA-HF

Baseline Differences	 Attenuation of effect on HF hospitalizations could reflect baseline differences between groups, with more severe stages of HF being harder to modify However, empagliflozin has been shown to have consistent efficacy across important subgroups in previous analyses⁴⁻⁹, with no suggestion of decreased efficacy amongst patients with more advanced HF syndromes
Mechanistic Overlap	 Attenuation of effect on HF hospitalizations could reflect mechanistic overlap, with high diuretic doses dampening empagliflozin's osmotic diuretic effects However, previous findings have shown that combination with loop diuretics potentiates SGLT2i-associated natriuresis rather than dampens it¹⁰ In addition, SGLT2 inhibitors' mechanisms of effect likely include a variety of pleiotropic effects beyond diuresis including alteration of circulating proteomics, enhancement of nutrient deprivation signaling and others¹¹⁻¹³
Statistical Chance	 Analyses were post hoc and not corrected for multiplicity A similar attenuation not seen in DAPA-HF

Conclusions

- In EMPEROR-Reduced, empagliflozin demonstrated a consistent effect on the primary composite outcome of hospitalization for HF or CV death, along with a comparable safety profile, regardless of baseline diuretic doses.
- We observed a trend of an attenuated effect of empagliflozin on heart failure hospitalizations amongst patients treated with the highest doses of loop diuretics – a hypothesis generating observation which requires additional evaluation.

References

1. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. Cardiovascular and Renal Outcomes with Empagliflozin in Heart Failure. N Engl J Med. 2020;383(15):1413-24.

2. McMurray JJV, Solomon SD, Inzucchi SE, Kober L, Kosiborod MN, Martinez FA, et al. Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction. N Engl J Med. 2019;381(21):1995-2008.

3. Jackson AM, Dewan P, Anand IS, Belohlavek J, Bengtsson O, de Boer RA, et al. Dapagliflozin and Diuretic Use in Patients With Heart Failure and Reduced Ejection Fraction in DAPA-HF. Circulation. 2020;142(11):1040-54.

4. Anker SD, Butler J, Filippatos G, Khan MS, Marx N, Lam CSP, et al. Effect of Empagliflozin on Cardiovascular and Renal Outcomes in Patients With Heart Failure by Baseline Diabetes Status: Results From the EMPEROR-Reduced Trial. Circulation. 2021;143(4):337-49.

5. Butler J, Packer M, Filippatos G, Ferreira JP, Zeller C, Schnee J, et al. Effect of empagliflozin in patients with heart failure across the spectrum of left ventricular ejection fraction. Eur Heart J. 2022;43(5):416-26.

6. Zannad F, Ferreira JP, Pocock SJ, Zeller C, Anker SD, Butler J, et al. Cardiac and Kidney Benefits of Empagliflozin in Heart Failure Across the Spectrum of Kidney Function: Insights From EMPEROR-Reduced. Circulation. 2021;143(4):310-21.

7. Januzzi JL, Jr., Zannad F, Anker SD, Butler J, Filippatos G, Pocock SJ, et al. Prognostic Importance of NTproBNP and Effect of Empagliflozin in the EMPEROR-Reduced Trial. J Am Coll Cardiol. 2021;78(13):1321-32.

References

8. Butler J, Anker SD, Filippatos G, Khan MS, Ferreira JP, Pocock SJ, et al. Empagliflozin and health-related quality of life outcomes in patients with heart failure with reduced ejection fraction: the EMPEROR-Reduced trial. Eur Heart J. 2021;42(13):1203-12.

9. Verma S, Dhingra NK, Butler J, Anker SD, Ferreira JP, Filippatos G, et al. Empagliflozin in the treatment of heart failure with reduced ejection fraction in addition to background therapies and therapeutic combinations (EMPEROR-Reduced): a post-hoc analysis of a randomised, double-blind trial. Lancet Diabetes Endocrinol. 2022;10(1):35-45.

10. Griffin M, Rao VS, Ivey-Miranda J, Fleming J, Mahoney D, Maulion C, et al. Empagliflozin in Heart Failure: Diuretic and Cardiorenal Effects. Circulation. 2020;142(11):1028-39.

11. Packer M, Anker SD, Butler J, Filippatos G, Ferreira JP, Pocock SJ, et al. Empagliflozin in Patients With Heart Failure, Reduced Ejection Fraction, and Volume Overload: EMPEROR-Reduced Trial. J Am Coll Cardiol. 2021;77(11):1381-92.

12. Scholtes RA, Muskiet MHA, van Baar MJB, Hesp AC, Greasley PJ, Hammarstedt A, et al. The Adaptive Renal Response for Volume Homeostasis During 2 Weeks of Dapagliflozin Treatment in People With Type 2 Diabetes and Preserved Renal Function on a Sodium-Controlled Diet. Kidney Int Rep. 2022;7(5):1084-92.

13. Packer M. Critical Reanalysis of the Mechanisms Underlying the Cardiorenal Benefits of SGLT2 Inhibitors and Reaffirmation of the Nutrient Deprivation Signaling/Autophagy Hypothesis. Circulation. 2022;146(18):1383-405.

Supplementary Slides

Statistical Analysis

- Baseline characteristics were presented descriptively using post-hoc analyses with an ordinal regression likelihood ratio test to evaluate whether there is a linear trend across group
- Time-to-event analyses were performed using a multivariable Cox proportional hazards model to derive hazard ratio (HR) and 95% confidence interval (95% CI)
- Total (first and recurrent) hospitalisations endpoint was analysed with a joint frailty model together with cardiovascular death to obtain HR and 95% Cl
- Both multivariable models included the following baseline characteristics as covariates: LVEF, age, sex, eGFR, diabetes status, and region
- Endpoints related to change in diuretics therapy were analysed as time-to-first occurrence of the event of interest
- For changes in KCCQ scores and physiologic outcomes analyses, mixed model with repeated measures (MMRM) was used. This MMRM model included age, baseline eGFR, and baseline LVEF as linear covariates and sex, region, diabetes status at baseline, visit by treatment by baseline diuretics interaction, and baseline value by visit interaction as fixed effects

Statistical Analysis

- The treatment effect of empagliflozin (compared to placebo) by diuretics therapy was assessed of each outcome, therefore the subgroup of diuretics use or dose and all necessary interactions were added to the model, where applicable.
- HRs, mean differences and estimates for slope analysis were compared across subgroups by adding p-value for trend across all subgroups.
- P-values <0.05 are described as significant, p-values and 95% confidence intervals presented here were not adjusted for multiplicity

Additional outcomes at 12 months (1/2)

Additional outcomes at 12 months (2/2)

Endpoint	Adjusted me	an diffe	rence to	placeb	o (95% CI)	*	р-	<i>p</i> -trend (by dose)		
NT-proBNP, pg/mL (ad	ljusted mean ratio shown)									
No diuretics	0.79 (0.67, 0.95)				•			0.250		
<40 mg	0.88 (0.76, 1.01)				•					
40 mg	0.87 (0.78, 0.96)				•					
>40 mg	0.92 (0.81, 1.04)				•					
Hematocrit, %										
No diuretics	2.10 (1.33, 2.87)				⊢ _●	I		0.799		
<40 mg	2.52 (1.91, 3.13)					-1				
40 mg	2.43 (1.97, 2.88)				F.	I				
>40 mg	2.11 (1.57, 2.66)									
		-4	-2	0	2	4	6			
		Favors	placebo 🗲		> Favors	empaglifle	ozin			

*Adjusted mean ratio to placebo (95% CI) reported for NT-proBNP; point markers may obscure error bars. CI, confidence interval; NT-proBNP, NT-pro-BNP, N-terminal pro-B type natriuretic peptide.