

The beginning of the end for KRAS cancers

APRIL 8-13, 2022 • #AACR22

Norbert Kraut, PhD Boehringer Ingelheim RCV, Discovery Research, Vienna, Austria

Disclosure Information

APRIL 8-13 • #AACR22

Norbert Kraut

I have the following relevant financial relationships to disclose:

Employee of Boehringer Ingelheim

I will not discuss off label use in my presentation

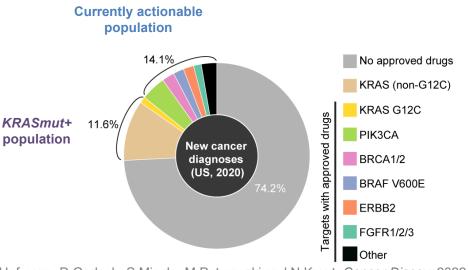
I will discuss the potential for investigational use of KRAS^{G12D} inhibitors, pan-(K)RAS inhibitors and pan-KRAS PROTAC degraders

Precision cancer therapies in 2022

American Association for Cancer Research

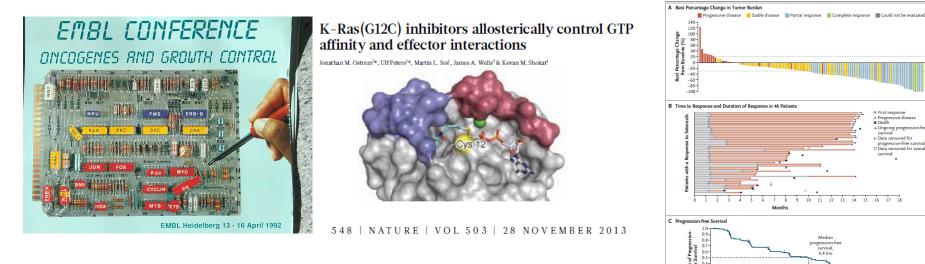
APRIL 8-13 • #AACR22

Target	Cancer types	Molecules		
ALK fusion	NSCLC adeno, ALCL	crizotinib, alectinib, ceritinib, brigatinib, lorlatinib		
BCR-ABL fusion	CML, Ph+ ALL	imatinib, dasatinib, nilotinib, bosutinib, ponatinib, asciminib		
BRAF V600E mutation	Melanoma, hairy cell leukemia, NSCLC adeno, anaplastic thyroid, colorectal	vemurafenib, dabrafenib, encorafenib (+MEKi; +EGFRi in CRC)		
BRCA mutation	Breast, epith. ovarian, fall. tube, peritoneal, prostate, pancreatic cancer	olaparib, rucaparib, talazoparib, niraparib		
EGFR del19/L858R mutation	NSCLC adeno	gefitinib, erlotinib, afatinib, osimertinib, dacomitinib		
EGFR T790M mutation	NSCLC adeno	osimertinib		
EGFR exon 20 insertion	NSCLC adeno	amivantamab, mobocertinib		
EzH2 mutation	Follicular lymphoma, epitheloid sarcoma	tazemetostat		
FGFR2 fusion	Cholangiocarcinoma	pemigatinib, infigratinib		
FGFR2/3 mutation or fusion	Bladder cancer	erdafitinib		
FLT3 mutation	AML	midostaurin, gilteritinib		
HER2 amplification	Breast cancer, gastric cancer	trastuzumab, pertuzumab, ado-trastuzumab emtansine, lapatinib, neratinib, margetuximab-cmkb, fam-trastuzumab-deruxtecan-nxki, tucatinib		
IDH1 mutant, IDH2 mutant	AML	ivosidenib (IDH1), enasidenib (IDH2)		
KIT/PDGFR mutation	GIST, MDS	imatinib, ripretinib		
KRAS G12C mutation	NSCLC adeno	sotorasib		
MET exon 14 mutation	NSCLC adeno	capmatinib, tepotinib		
NF1 mutation	Neurofibromatosis type 1	selumetinib		
NTRK fusion	NSCLC adeno, other (agnostic)	larotrectenib, entrectenib		
PIK3CA mutation	ER/PR+, HER2- breast cancer	alpelisib		
PDGFRA exon 18 mutation	GIST	avapritinib		
RETfusion	NSCLC adeno, papillary thyroid cancer	selpercatinib, pralsetinib		
ROS1 fusion	NSCLC adeno	crizotinib, entrectenib		
VHL mutation	VHL-associated RCC, CNS hemangioblastoma, PNET	belzutifan		


Impact of drugging all KRAS mutants

APRIL 8-13 • #AACR22

- Drugging all KRAS mutants has the potential to almost double the reach of Precision Oncology
- New patients per year in the U.S.:
 - ~250,000 cancer patients (14.1%) eligible for FDA approved precision medicines
 - ~210,000 patients (11.6%) with KRAS mutated or amplified cancers
- KRASmut+ population largely non-

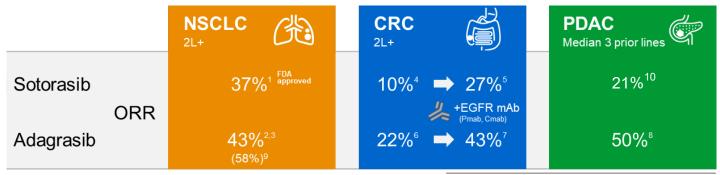

M Hofmann, D Gerlach, S Misale, M Petronczki and N Kraut, Cancer Discov. 2022

Progress in cracking KRAS

AACCR American Association for Cancer Research

N ENGL J MED 384;25 NEJM.ORG JUNE 24, 2021

APRIL 8-13 • #AACR22

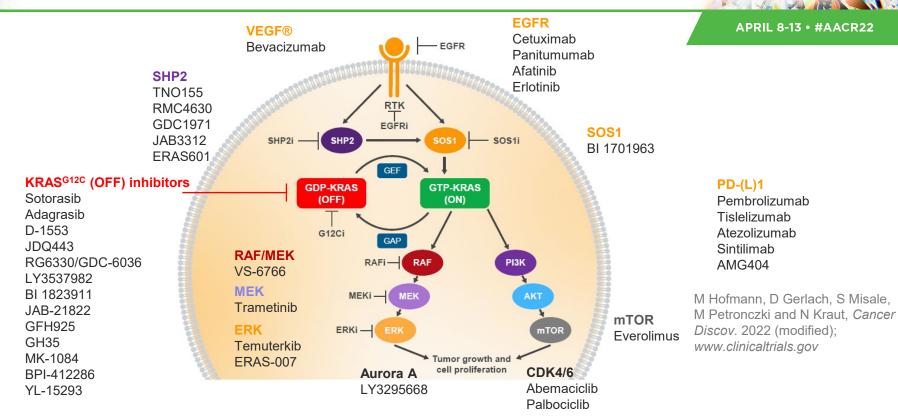

- 1982-2012: Three decades of tinkering with targeting RAS
- 2013: Direct KRAS G12C inhibition (Ostrem et al., Nature 2013)
- 2021: FDA approval of KRAS^{G12C} inhibitor sotorasib (Skoulidis et al., NEJM 2021)

KRAS^{G12C} is an actionable cancer driver

APRIL 8-13 • #AACR22

Objective Response Rates (ORR) of patients with KRAS^{G12C} mutated tumors

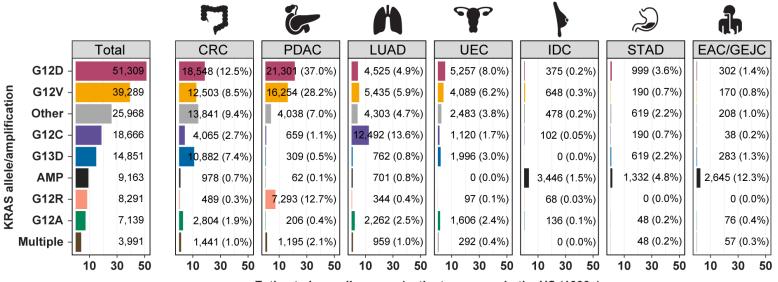
Small patient numbers reported to date


Mutant-selective KRAS^{G12C} inhibitors are currently changing the treatment paradigm for patients with KRAS^{G12C}-mutated cancers

¹Skoulidis et al., NEJM 2021; Phase 2 CodeBreaK 100; DCR 81% ³Mirati Therapeutics Investor Call 20th Sept 2021; Phase 1/1b, 2 KRYSTAL-1; DCR 98% ⁵Fakih et al ESMO 2021#3245; CodeBreak101 ph1b; sotorasib+panitumumab; n=26 pts, incl. 3 uPR, DCR 87% ⁷Fakih M, ESMO Sept 16-212021. Abstract nr 434; KRYSTAL-1 ph 1/2; adagrasib+cetuximab; n=28 its, incl. 2 uPR, DCR 100% ⁹Mirati Therapeutics Investor Call 8th November 2021 ²AACR-NCI-EORTC 2020. Abstr LBA-04 ⁴ASCO 2021 Amgen investor cell p23; CodeBreak100 ph 1/2, DCR 74% ⁶Weiss J, ESMO Sept 16-21 2021. Abstract nr LBA6; KRYSTAL-1, ph1/2; n=45 pts, incl. 1 uPR, DCR 87% ⁶Christensen, AACR-NCI-EORTC Molecular Targets Meeting, Oct 9, 2021; n=10 pts, incl. 1 uPR, DCR 100% ¹⁰Bekaii-Saab, ASCO-GI 2022 oral presentation

ANNUA Clinical KRAS^{G12C} inhibitor resistance American Association for Cancer Research 2022 Upstream Resistance Alterations **APRIL 8-13 • #AACR22** = resistance mechanism KRAS^{G12C} KRAS^{G12C} ALK EML4-ALK KRASG KRAS^{G12C} eration KRAS^{G12C} RFT RET^{M918T}. CCDC6-RET upstream KRAS^{G12C} KRAS^{G120} upstrea Iteration MET METAMP teratio KRAS^{G12C} KRASG12C KRAS^{G12C} KRAS^{G12C} KRAS^{G12C} EGFR EGFRP1108L, EGFRAMP, EGFRA289V KRAS RASG12 FGFR2 FGFR2D304N, FGFR2A68T, FGFR2AMP, FGFR3-TACC3 Histologic transformation KRAS^{G12C} KRAS from adenocarcinoma KRAS^{G120} RAS Resistance Alterations to squamous-cell carcinoma in NSCLC KRAS^{G12} KRAS^{G12C} + RAS G12D**, G12V**, G12F***, G12W***, KRAS KRAS Secondary* alteration A RAS G12R, G13D, Q61H, V8I, V14I **Primary Tumor** + RAS KRAS Amplification G12C and wild-type alteration KRAS^{G12C} Other Resistance Alterations **KRAS Drug Pocket** R68S, H95D, H95R, Y96D, Y96C PIK3R1^{S361fs}, PIK3R1^{H1047R}, PTENN48K, NRAS Mutation G13V, Q61L, Q61K, Q61R **PI3K** PTENE106G, PTENE200S, PTENG209V, RICTORAMP KRASG12C APCP1001S, APCA1002G, CTNNB1D546G WNT Downstream Resistance Alterations downstream alteratio alteration KRASGI2C PTCH1^{E1257K} Hedgehog BRAFV600E, BRAFK601E, AKAP9-BRAF, NRF1-BRAF, RAF **KRAS^G** RAF1-CCDC176, RAF1-TRAK1 + downstream SMARCA4R181Kfs*106, RB1L60Ffs*50, IDH2R1725, IDH1R132C, RIT1P128L, NF1R2637 observed for Miscellaneous MEK MAP2K1^{K57N}, MAP2K1^{K57T}, MAP2K1^{Q56P}, appendiceal cancer patient MAP2K1^{I99-K104}, MAP2K1^{E102-I103del} Black indicates NSCLC only. Red indicates CRC only. 1. Tanaka, N., et al., 2021. Cancer Discovery. · Ct DNA for G12C not always detected Bold indicates both NSCLC and CRC Awad, M.M. et al., 2021., 384(25), pp.2382-2393. ** mutations detected in trans Zhao, Y., et al., 2021, Nature, pp.1-5. 3. *** mutations in cis

Clinical combination strategies for KRAS^{G12C} inhibitors



Opportunities of drugging KRAS beyond KRAS^{G12C}

APRIL 8-13 • #AACR22

Patient numbers for distinct KRAS mutant alleles/amplification in top 7 cancer types (US)

Estimated new diagnoses/patients per year in the US (1000s)

CRC: colorectal cancer; PDAC: pancreatic ductal adenocarcinoma; LUAD: lung adenocarcinoma; UEC: undifferentiated endometrial carcinoma; IDC: invasive ductal carcinoma; STAD: stomach adenocarcinoma; EAC/GEJC: esophageal adenocarcinoma/ gastroesophageal junction cancer

M Hofmann, D Gerlach, S Misale, M Petronczki and N Kraut, Cancer Discov. 2022

KRAS inhibitors in development

More than 10 KRAS^{G12C} inhibitors in clinical development (druggability advantage of nucleophilic cysteine)

APRIL 8-13 • #AACR22

- Non-KRAS^{G12C} mutants pose significantly druggability challenges (no inherent nucleophilicity)
- All KRAS inhibitors beyond KRAS^{G12C} covered here (blue box) are at preclinical stage

Mutant-specific KRAS inhibitors					
Programs (company)	IND	Target	Phase		
Sotorasib/AMG 510 (Amgen)			Approved		
Adagrasib/MRTX849 (Mirati)					
D-1553 (InventisBio)					
JDQ443 (Novartis)					
RG6330/GDC-6036 (Roche)		KRAS ^{G12C}			
LY3537982 (Eli Lilly)			Clinical		
BI 1823911 (Boehringer Ingelheim)					
JAB-21822 (Jacobio)					
GFH925 (GenFleet)					
GH35 (Genhouse Bio)					
MRTX1133 (Mirati)					
KRASG12D1-3 (Boehringer Ingelheim)		KRAS ^{G12D}			
RAS(ON) G12D (Revolution Medicines)			Preclinical		
RAS(ON) G13C (Revolution Medicines)		KRAS ^{G13C}			

LUNA18 (Chugai), cyclic peptide pan-RAS inhibitor, Clinical

Pan-(K)	RAS inhibito	ors	
			Phase
RSC-1255 (RasCal Therapeutics)		Pan-RAS	Clinical
BI-pan-KRAS1-4 inhibitors		Pan-KRAS:	
(Boehringer Ingelheim)		KRAS ^{G12D/V} ,	
	_	KRAS wild type	ē
BI-pan-KRASdegrader1		Pan-KRAS:	
(Boehringer Ingelheim)		KRAS ^{G12C/D/V/A}	,
		KRAS ^{G13C} ,	
		KRASA146T/P.	
		KRASQ61E/P	
		KRAS wild-type	e
RMC-6236 (Revolution Medicines)		Pan-RAS:	
		KRAS ^{G12D/V}	
		KRAS ^{G13D}	
		KRAS ^{061K}	
		RAS wild-type	2
		,,	
		Millefier	
		ivi Hotma	ann, D Gerlac

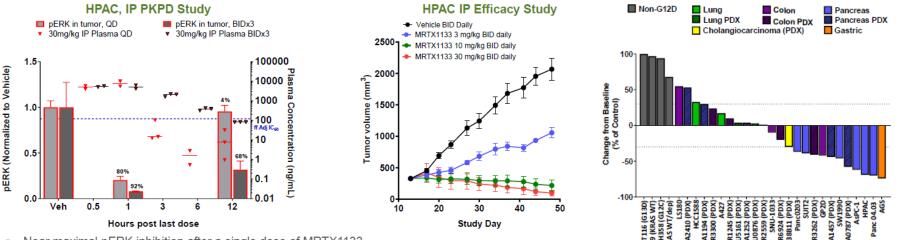
These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

M Hofmann, D Gerlach, S Misale, M Petronczki and N Kraut, *Cancer Discov.* 2022

AACR ANNI JA Mirati Therapeutics: Discovery of MRTX1133, J(-American Association a non-covalent inhibitor of KRAS^{G12D} for Cancer Research 2022 New Urlean Medicinal chemistry campaign towards MRTX1133 **APRIL 8-13 • #AACR22** 1 warhead removed C-4 substitution change 2. core switch 5A R= CH₂CN 5B R = H MRTX849 15 5B single-digit µM K $K_{\rm D}({\rm G12D}) = 3.5 \,\mu{\rm M}$ K_D(G12D) = 0.0008 μM $K_{\rm D}(WT) = 36 \, {\rm uM}$ HTRF KRAS(G12D) IC50 = 0.005 µM C-2 substitution change Wang et al., J. Med. Chem. Fragment Merge C-7 substitution 2022, 65, 4, 3123; Zheng et {15, 25, 36} change al., J. Med. Chem. 2022, 65, 4,3119 **MRTX1133** 36 25 Kp(G12D) ~ 0.0002 nM HTRF KRAS(G12D) ICso = < 0.002 µM HTRF KRAS(G12D) IC=0 = < 0.002 µM AlphaLISA IC₅₀ = 5 nM pERK AGS IC50 = 2 nM 2D viability AGS(KRAS G12D) ICso = 6 nM

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

2D viability MKN1(KRAS WT) IC₅₀>3000 nM


Characterization of MRTX1133 in KRAS^{G12D} xenograft models

AACR American Association for Cancer Research

APRIL 8-13 • #AACR22

IP administration of MRTX1133 to xenograft tumor-bearing mice inhibits KRAS signaling and exhibits antitumor activity

MRTX1133 demonstrates cytoreductive antitumor efficacy across a panel of xenograft tumor models

- Near maximal pERK inhibition after a single dose of MRTX1133
- BIDx3 administration demonstrates robust pERK inhibition for entire dose interval and correlates with maximal antitumor efficacy

Limited oral bioavailability; formulations to enable IV delivery and maximize plasma exposure are being pursued

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

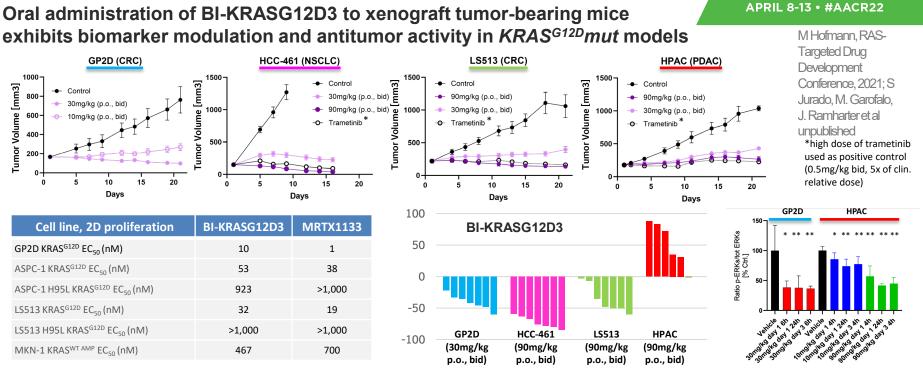
J Christensen, AACR/NCI/EORTC Conference 2021

Boehringer Ingelheim approach to KRAS^{G12D} inhibitors

AACER American Association for Cancer Research

APRIL 8-13 • #AACR22

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been


D McConnell, The Third NCI RAS Initiative Symposium 2021

Characterization of BI-KRAS^{G12D} inhibitors

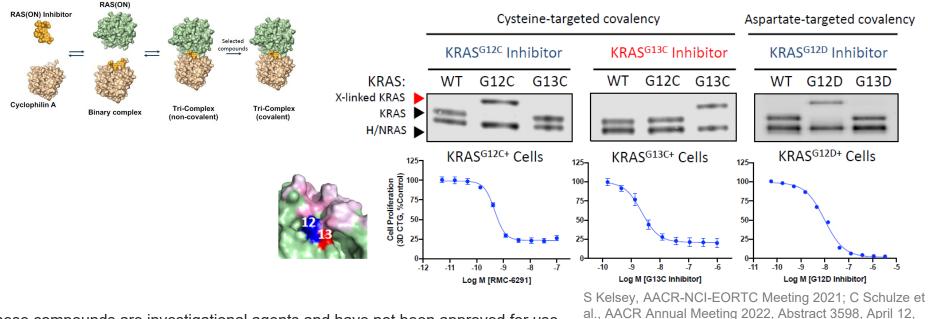
American Association for Cancer Research 2022 New (

ANNUAL

NG

BI-KRASG12D3 is an orally available, mutant-selective non-covalent inhibitor of KRAS^{G12D}

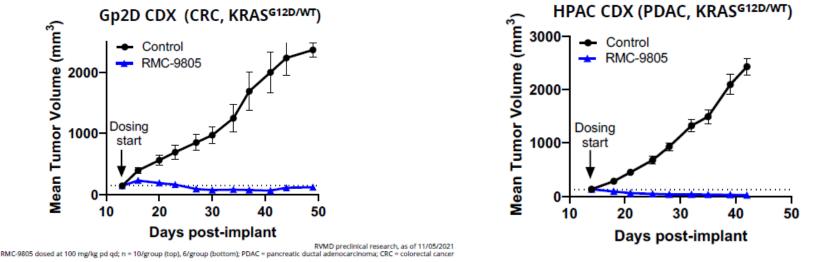
Revolution Medicines: Mutant selectivity beyond KRAS^{G12C}



APRIL 8-13 • #AACR22

Formation of inhibitory tri-complexes

Mutant selective inhibition of KRAS^{G13C} and KRAS^{G12D}

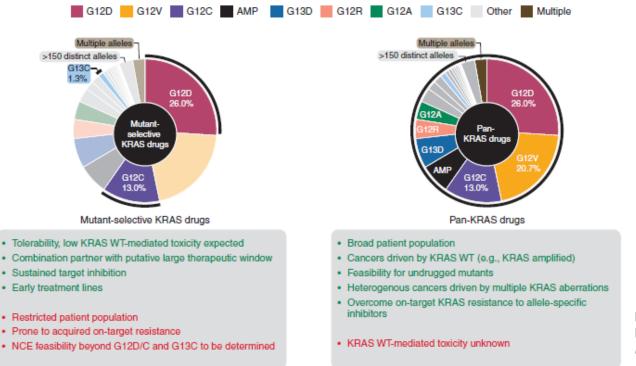

2022

RMC-9805: *In vivo* efficacy in models of KRAS^{G12D} cancers

APRIL 8-13 • #AACR22

dosed at 100 mg/kg p.o. qd

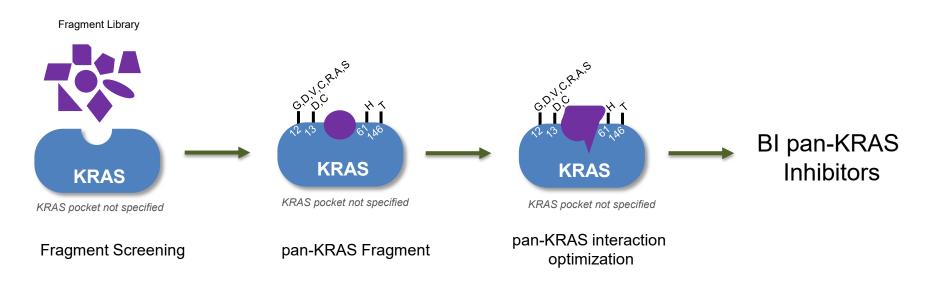
RMC-9805 is an orally available, mutant-selective covalent inhibitor of KRAS^{G12D}


These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

S Kelsey, Corporate Presentation 2022; JE Knox et al., AACR Annual Meeting 2022, Abstract 3596, April 12, 2022

Selectively versus broadly addressing KRAS mutants

APRIL 8-13 • #AACR22



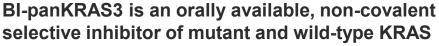
M Hofmann, D Gerlach, S Misale, M Petronczki and N Kraut, *Cancer Discov.* 2022

Boehringer Ingelheim approach to pan-KRAS inhibitors

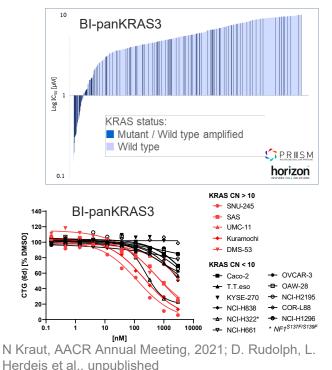
APRIL 8-13 • #AACR22

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been

D McConnell, The Third NCI RAS Initiative Symposium 2021

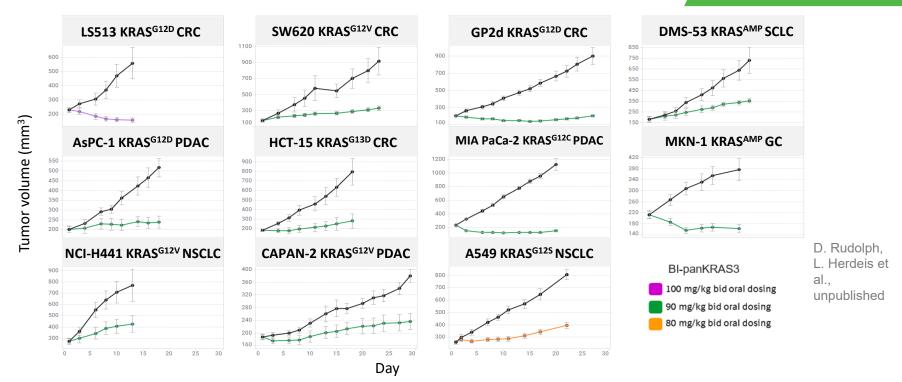

Characterization of BI-panKRAS inhibitors

APRIL 8-13 • #AACR22


Pan-KRAS PPI Inhibition Pan-RAS PPI Inhibition (BI-panKRAS1, GDP-RAS::SOS1 AlphaScreen) (BI-2852, GDP-RAS::SOS1 AlphaScreen) 140-120-KRAS 120-G12D Relative Luminescence Units រ<mark>ខ</mark>្ខ័100 · 100 - KRAS HRAS 80-🕂 G12D NRAS 80 60-HRAS Relative 40-NRAS 60 20-0. 40 10-12 10-10 10-8 10-6 10-4 BI-2852 concentration [M] 20 PPI Inhibition (Alphascreen) BI-2852 BI-panKRAS1 IC₅₀ GDP-KRAS^{G12D}::SOS1 19 nM 820 nM 10-10 10.8 10-6 10 IC₅₀ GDP-KRAS^{wt}::SOS1 91 nM 460 nM BI-panKRAS1 concentration [M] IC50 GDP-HRASWT::SOS1 ~20000 nM 920 nM IC₅₀ GDP-NRAS^{wt}::SOS1 ~20000 nM 640 nM

BI-panKRAS1 is isotype selective for KRAS

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.


BI-panKRAS3 activity on cell panel

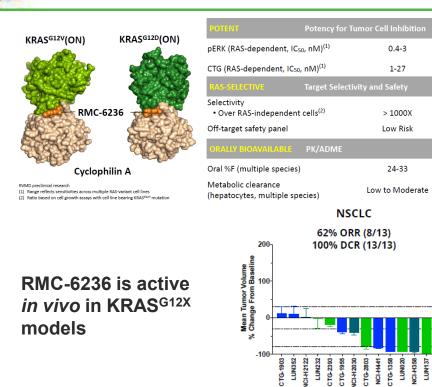
BI-panKRAS3: *In vivo* efficacy in models of KRAS^{MUT/AMP} cancers

APRIL 8-13 • #AACR22

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

CRC=colorectal cancer; PDAC_ pancreatic cancer; NSCLC=non-small cell lung cancer; SCLC= small cell lung cancer; GC= gastric cancer

Revolution Medicines: Characterization of RAS^{MULTI} inhibitor RMC-6236


CRC

38% ORR (5/13)

54% DCR (7/13)

dosed at 25 mg/kg p.o. qd

APRIL 8-13 • #AACR22

These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been setablished.

S Kelsey, AACR-NCI-EORTC Meeting 2021; Corporate Presentation 2022; M Singh et al., AACR Annual Meeting 2022, Abstract 3597, April 12, 2022

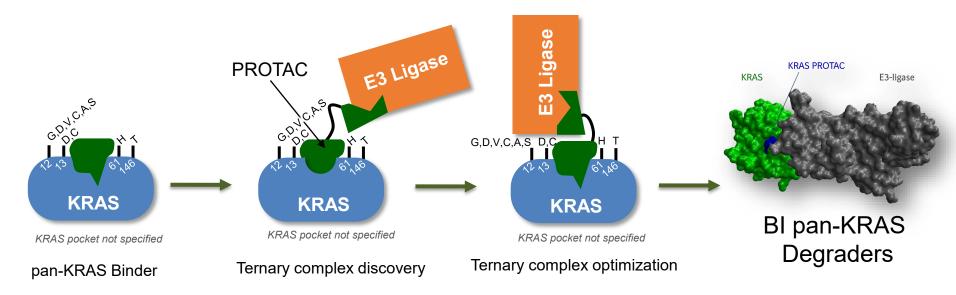
CRC007 CRC043 CRC078

RMC-6236 inhibits KRAS, HRAS and NRAS

mPD

KRAS^{G12V}

PDAC

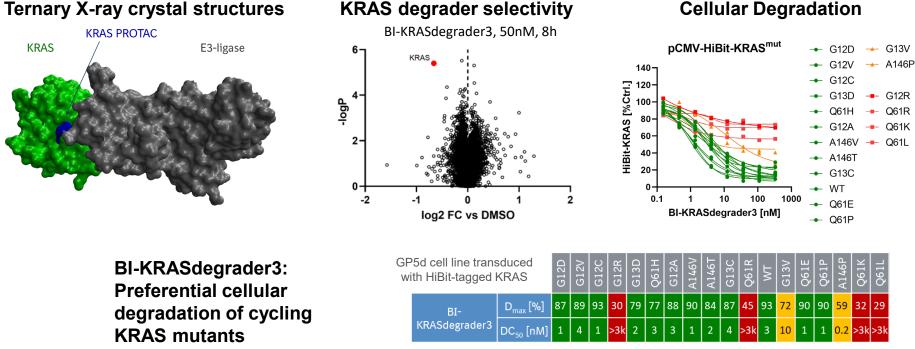

57% ORR (8/14)

86% DCR (12/14)

Boehringer Ingelheim approach to pan-KRAS degraders

APRIL 8-13 • #AACR22

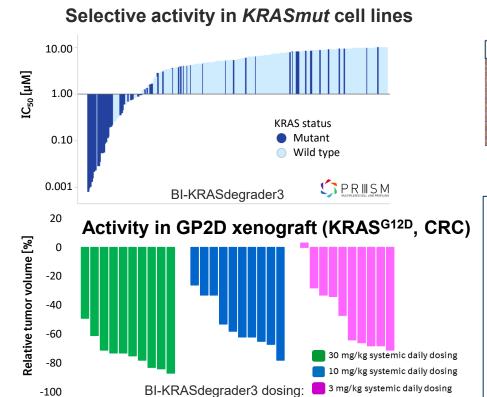
PROTACs = Proteolysis Targeting Chimeras


These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.

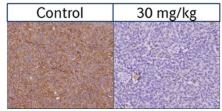
D McConnell, The Third NCI RAS Initiative Symposium 2021

PROTACs enable irreversible KRAS inhibition by degradation

APRIL 8-13 • #AACR22

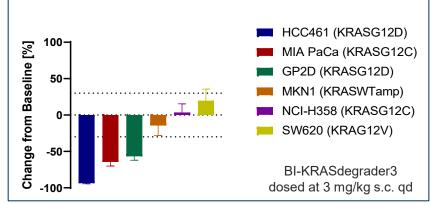


These compounds are investigational agents and have not been approved for use. The efficacy and safety of these investigational compounds have not been established.


J. Popow, C. Kofink, A. Mantoulidis, A. Ciulli, W. Farnaby, et al. unpublished

Characterization of BI-KRASdegrader3: In vivo degradation and efficacy

In vivo KRAS degradation



BI-KRASdegrader3: KRAS protein levels in GP2D model after 24 hours treatment

J. Popow, C. Kofink et al. unpublished

APRIL 8-13 • #AACR22

Activity across KRAS-driven xenograft models

APRIL 8-13 • #AACR22

Summary and conclusions:

- Targeting KRAS has the potential to almost double the patient population eligible for precision oncology
- Progress in drugging other KRAS mutants with allele-specific inhibitors, eg
 KRAS^{G12D} and KRAS^{G13C} Feasibility for other KRAS mutants to be determined
- Strong rationale for pan-KRAS concepts, including direct pan-(K)RAS inhibitors and pan-KRAS degraders – Broad mutant coverage appears feasible
- First compounds directly targeting KRAS beyond KRAS^{G12C} are expected to reach the clinic soon
- We are at the beginning of the end for KRAS cancers: Drugging of all the major KRAS mutant variants and advancing rational combinations for all KRAS-driven cancers is gaining traction

Acknowledgements

AMACHR American Association for Cancer Research

ANNUAL MEETING 2022 New Orleans

APRIL 8-13 • #AACR22

Boehringer Ingelheim – Cancer Research

Paolo Chetta Michaela Garofalo Michael Gmachl Marco Hofmann Manfred Kögl Sabine Jurado Ralph Neumüller Mark Pearson Mark Petronczki Johannes Popow Dorothea Rudolph Fabio Savarese Irene Waizenegger Melanie Wurm Vittoria Zinzalla

Boehringer Ingelheim – Medicinal Chemistry & Drug Discovery Sciences

Joachim Broeker Darryl McConnell Andreas Gollner Lorenz Herdeis Christiane Kofink Andreas Mantoulidis Jürgen Ramharter Chris Smethurst Harald Weinstabl Birgit Wilding Tobias Wunberg

Daniel Gerlach Andreas Wernitznig Waltraud Pasteiner Peter Ettmayer Thomas Gerstberger Philipp Jäger Nikolai Mischerikov Otmar Schaaf **Dundee University**

Alessio Ciulli William Farnaby

MD Anderson Cancer Center

Tim Heffernan Joseph Marszalek Chris Vellano

Memorial Sloan Kettering CC

Piro Lito Sandra Misale Neal Rosen

Vanderbilt University

Steve Fesik Alex Waterson

Broad Institute of MIT and Harvard

Jennifer Roth