Bronchodilators: Mechanism of action

Cholinergic pathway

Cholinergic receptors are located on airway smooth muscle cells; activation by acetylcholine increases peripheral airway resistance¹

Antagonists

Long-acting muscarinic antagonists (LAMAs)

Bind to muscarinic receptors and block the bronchoconstrictive effects of acetylcholine binding¹

Adrenergic pathway

 $\begin{array}{l} \beta_2\text{-adrenergic receptors are located}\\ \text{on airway smooth muscle cells;}\\ \text{activation by }\beta_2\text{-agonists results in}\\ \text{relaxation of bronchial smooth muscle}^{1,2} \end{array}$

Agonists

Long-acting β₂-agonists (LABAs)

Bind to β_2 -receptors to induce bronchodilation and smooth muscle relaxation²

LAMAs and LABAs have complementary mechanisms of action^{1,2}

Bronchodilators act by improving lung function and reducing dynamic hyperinflation at rest and during exercise^{3,4}

SC-US-69385 Boehringer Ingelheim ©2020

1. Barnes PJ, et al. Nat Rev Dis Primers. 2015;1:15076; 2. Ohar JA and Donohue JF. Semin Respir Crit Care Med. 2010;31:321-333; 3. O'Donnell DE, et al. Eur Respir J. 2004;23:832-840; 4. O'Donnell DE, et al. Eur Respir J. 2004;24:86-94

Inhaled corticosteroids (ICS): Mechanism of action

Actions of ICS:1,2

- · Inhibiting recruitment of inflammatory cells and release of proinflammatory mediators
- Reducing airway hyperresponsiveness

DNA, deoxyribonucleic acid

1. Raissy H, et al. Am J Respir Crit Care Med. 2013;187:798-803; 2. Barnes PJ. Pharmaceuticals (Basel). 2010;3:514-540